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Graham scan, a computational geometric algorithm for finding a two-dimensional convex hull,
is introduced to calculate binary phase diagrams. This algorithm is modified and applied to find
the convex hull of discrete points in the space of Gibbs energy vs mol fraction. The modified
Graham scan algorithm has a very low computational cost, which improves efficiency in binary
phase diagram calculation.
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1. Introduction

One decade ago, a strategy for phase diagram calculation
was proposed by Chen et al.[1,2] to overcome the difficulty
in finding the most stable phase equilibria. A continuing
effort to solve the problem has led to the current phase
diagram calculation software package Pandat.[3,4] A general
strategy for multicomponent, multiphase phase diagram cal-
culation in Pandat has been described in Ref 1. The general
strategy certainly covers the binary systems. However, a
special computational geometric algorithm for finding a
convex hull, the Graham scan, is suitable for binary phase
diagram calculations. This algorithm is not only very effi-
cient for binary systems but is also an important algorithm
for multicomponent phase diagram calculations. This study
will first describe briefly the strategy for binary phase dia-
gram calculations. It will then present the original Graham
scan algorithm and apply it to find the convex hull of the
discrete points in the space of Gibbs energy vs mol fraction
at a constant temperature and pressure. The algorithm is
modified to further improve the computational efficiency.

2. Brief Description of Binary Phase
Diagram Calculation

The strategy to calculate a binary phase diagram at con-
stant pressure has been described in detail.[2] With the as-
sumption that the Gibbs energy function for each phase in a
binary system is given, the critical calculation step is to find

the stable phase equilibria at a constant temperature. Figure
1(a) shows a Gibbs energy (G) vs mol fraction (x) diagram
for a hypothetical binary system with phases �, �, �, and �,
where � and � are solution phases, and � and � are stoi-
chiometric compounds. In Fig. 1(b), a lower envelope of the
Gibbs energy curves is drawn using a thick, dark line, which
represents the Gibbs energies for stable phase equilibria.
Obtaining this envelope requires the information on the
relative positions among the Gibbs energy curves. Because
it is much easier to compare the relative positions of points
than curves, each Gibbs energy curve for a solution phase is
partitioned into n points along the compositional axis, as
shown in Fig. 2(a) with n � 11. Figure 2(b) shows the
lower part of the convex hull for these points. As long as the
value of n is large enough, the lower part of the convex hull
in Fig. 2(b) is a very good approximation of the envelope of
the Gibbs energy curves in Fig. 1(b).

Chen et al.[2] did not explicitly state how to calculate the
lower part of the convex hull. An algorithm designed di-
rectly from Eq 6 in Ref 2 compares all of the points to the
tangent line formed between two points. If none of the
points is below the tangent line, then the two points are in
stable equilibrium. The computational cost of this algorithm
is O(n2), where n is the number of divisions into which the
compositional axis is partitioned and the O notation repre-
sents an upper bound on the computational cost within a
constant factor.[5]

Because the points in stable equilibria form a lower con-
vex hull, finding these points is equivalent to searching for
a convex hull of this set of points. For a convex hull of a set
of points in two-dimensional space, there are some faster
algorithms than O(n2). The most elegant one is the Graham
scan algorithm.[6–8]

3. Two-Dimensional Convex Hull Algorithm:
The Graham Scan

When at Bell Laboratories, Graham[6] developed a fast
algorithm for locating a two-dimensional convex hull. This
algorithm is now called the Graham scan algorithm.[7–9] The
Graham scan algorithm also marks the beginning of the
computational geometry. Before his algorithm, the previous
one used at Bell Laboratories had the computational cost
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of O(n2). When n increases, the cost increases on the order of
n2. However, the Graham scan algorithm costs only O(nlogn).

Because only the lower part of the convex hull is of
interest in calculating the stable phase equilibria, many
points in Fig. 2(b) can be excluded before applying the
convex hull algorithm. At any given composition, only the
point with the lowest Gibbs energy could be the most stable.
In other words, only the lowest point among the points with
the same composition is considered in finding the convex
hull. These points are shown in Fig. 3(a).

Following is an explanation of how the Graham scan
algorithm finds the convex hull for the set of points in
Fig. 3(a). The first step is to find an extreme point in this set.
The point at the pure component A, point 1 in Fig. 3(b), is
such an extreme point. The second step is to connect this
extreme point with other points and construct line segments,
as is shown in Fig. 3(b). These line segments are then sorted

by the polar angles with respect to the selected extreme
point 1. If there is a tie on the polar angle during sorting,
then the closer the point is to the extreme point, the smaller
the polar angle will be. If using only the numbers on the line
segments to represent the line segments, the line segments
in Fig. 3(b) are sorted in the order of 2, 3, 4, 7, 5, 6, 9, 12,
11, 13, 10, and 8. Points 6 and 9 have the same polar angle.
Because point 6 is closer to point 1 than point 9, point 6 is
put before point 9 in the sorted list. The third step is finding
the hull. This step relies on the fact that every vertex on a
convex hull represents a left turn in the counterclockwise
traversal of the convex hull boundary and that the line seg-
ment with the smallest polar angle must be on the convex
hull. The process was started at the first line segment 1 →
2, which is on the convex hull. Then examine the next point
(point 3). Because the angle formed from 1 → 2 → 3 is a
left turn, 3 is kept in the vertex list. Next examine point 4.

Fig. 1 (a) Gibbs energy vs molar fraction diagram at constant pressure and temperature. (b) The stable equilibrium states are expressed
as the lower envelope (black curve) of the Gibbs energy curves of phases.

Fig. 2 (a) � and � are partitioned into a series of hypothetical stoichiometric phases. (b) The lower part of the convex hull for the
stoichiometric points
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It is a left turn for the angle formed from 2 → 3 → 4. This
point is kept in the vertex list. However, the next point 7
forms a non-left turn for the angle 3 → 4 → 7 (Fig. 4a).
Point 4 is dropped from the convex hull vertex list, and the
angle 2 → 3 → 7 forms a left turn, as seen in Fig. 4(b).
Repeat this procedure until the right-most extreme point
(point 13) is reached. Because point 13 is the right-most
point, it must be one of the vertex points on the convex hull.
The final lower convex hull vertex list is 1 → 2 → 3 → 7
→ 12 → 13 (see Fig. 2b for the convex hull vertices). The
upper convex hull is not of interest in the stable phase
equilibrium calculation. Therefore, it is unnecessary to cal-
culate the full convex hull.

The most expensive step in the above Graham scan al-
gorithm is the sorting step, which costs O(nlogn), where n is
the total number of points considered. Then, the overall
computational cost of Graham scan algorithm is O(nlogn).

4. The Modified Graham Scan Algorithm

The Graham scan algorithm is designed for finding a
general convex hull. The convex hull of the Gibbs energy
curve of stable phase equilibria is a special type of
hull. First, the points are already sorted along the composi-
tional axis. Second, only the lower part of the hull is re-
quired. This specialty leads to the modification of the Gra-
ham scan.

In Fig. 5(a) points are already sorted in the order of 1
through 13 by the composition. Start from the line segment
1 → 2 and keep adding points one by one from points 3
through 6. Each of these added points forms a left turn with
two previous points. However, the next point (point 7)
forms a non-left turn with points 6 and 5. Point 6 is dropped.
Examine the segment 4 → 5 → 7. It is still a non-left turn,
and point 5 is dropped. For the same reason, point 4 is

Fig. 4 Finding the lower hull in the Graham scan algorithm. (a) Angle 3 → 4 → 7 is a non-left turn. (b) Point 4 is dropped, and the angle
2 → 3 → 7 is a left turn.

Fig. 3 Graham scan algorithm. (a) The points are considered for the lower part of the convex hull. (b) The lower part of the convex hull
for the stoichiometric points
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dropped. Finally, segment 2 → 3 → 7 forms a left turn, as
shown in Fig. 5(b). This procedure continues until the last
point (point 13) is reached. The final lower convex hull
vertex list is 1 → 2 → 3 → 7 → 12 → 13, which is the same
as that resulting from the original Graham scan algorithm,
although the procedures for obtaining these lists are differ-
ent.

Because the points are already sorted, the sorting step in
the original Graham scan could be eliminated. This step is
the only expensive step, with a cost of O(nlogn), and any
other step costs no more than O(n). Thus, the overall cost in
this modified version of the Graham scan has a computa-
tional cost of only O(n).

5. Calculation of Binary Phase Diagram

As long as there is the efficient modified Graham scan
algorithm for finding the lower part of the convex hull of a
set of discrete Gibbs energy points, it may follow the pro-
cedures described by Chen et al.[2] for calculating binary
temperature composition phase diagrams. At each tempera-
ture, the accurate phase equilibrium boundaries are solved
numerically with the local equilibrium condition (i.e., equal
chemical potential conditions) and the initial values from
the results of the convex hull. Boundaries at a series of
temperatures form a full binary temperature-composition
phase diagram.

As an example, the calculated binary phase diagram of
Fe-Cr is shown in Fig. 6. The body-centered cubic (bcc)
phase in this system exhibits a miscibility gap. This presents
no difficulty for the modified Graham scan algorithm in
finding the most stable phase equilibria.

6. Discussion

Tests have shown that it is enough to take n, the number
of partitions of the compositional axis, to be 100 for finding

stable phase equilibria. The authors did not pay attention to
the computational cost of partitioning the Gibbs energies of
a solution phase. If the cost of calculating the Gibbs energy
of each point is high, the overall computational efficiency
should be reevaluated.

Although the modified Graham scan finds the lower con-
vex hull for the discrete Gibbs energy points, it does not find
the full convex hull. To find the upper part of the hull,
another scan with the right-turn criterion is required. The
total computational cost is still O(n).

In principle, convex hull algorithms can be applied in
three-dimensional space[9] to a ternary isothermal section at
constant pressure. However, three-dimensional convex hull
algorithms are more complicated than two-dimensional
ones. Convex hull algorithms in high dimensional space are
also available,[9] but few are well-programmed. It is pos-

Fig. 5 Modified Graham scan algorithm. (a) Angle 5 → 6 → 7 is a non-left turn. (b) Drop points 6, 5, and 4 until the angle 2 → 3 →
7 forms a left turn

Fig. 6 Calculated binary phase diagram of Fe-Cr
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sible but difficult to apply those convex hull algorithms
directly to multicomponent phase diagram calculation. The
computational cost of finding the convex hull also increases
with the number of dimensions.[9]

7. Summary

At constant pressure and temperature, Gibbs energies of
stable phase equilibria form a lower part of a convex hull.
Partitioning the continuous Gibbs energy curves of solution
phases into discrete hypothetical stoichiometric phases en-
ables us to use efficient convex hull algorithms on discrete
points to find the convex hull of Gibbs energy points, in-
cluding both the hypothetical stoichiometric phases and the
stoichiometric phases from the system.

The Graham scan algorithm[6] was invented to find the
convex hull for any set of two-dimensional points. This
algorithm has a computational cost of O(nlogn). Its most
computationally expensive step is sorting the polar angles of
the points relative to the chosen extreme point. Each of the
other steps costs no more than O(n). In searching for the
convex hull of the discrete Gibbs energy points, the Graham
scan is modified to take advantage of the special arrange-
ment of the Gibbs energy points. Because Gibbs energy
points are already stored in order of composition, the sorting
step in the Graham scan could be eliminated, and the com-
putational cost in searching for the lower part of the convex
hull of Gibbs energy points is improved to be only O(n).
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